
DRAM is Plenty Fast for Wirespeed Statistics Counting

Bill Lin
Electrical and Computing Engineering

University of California, San Diego
billlin@ece.ucsd.edu

Jun (Jim) Xu
College of Computing

Georgia Institute of Technology
jx@cc.gatech.edu

ABSTRACT
Per-flow network measurement at Internet backbone links
requires the efficient maintanence of large arrays of statistics
counters at very high speeds (e.g. 40 Gb/s). The prevailing
view is that SRAM is too expensive for implementing large
counter arrays, but DRAM is too slow for providing wire-
speed updates. This view is the main premise of a number
of hybrid SRAM/DRAM architectural proposals [2, 3, 4, 5]
that still require substantial amounts of SRAM for large ar-
rays. In this paper, we present a contrarian view that mod-
ern commodity DRAM architectures, driven by aggressive
performance roadmaps for consumer applications (e.g. video
games), have advanced architecture features that can be ex-
ploited to make DRAM solutions practical. We describe
two such schemes that can harness the performance of these
DRAM offerings by enabling the interleaving of counter up-
dates to multiple memory banks. These counter schemes are
the first to support arbitrary increments and decrements for
either integer or floating point number representations at
wirespeed. We believe our preliminary success with the use
of DRAM schemes for wirespeed statistics counting opens
the possibilities for broader opportunities to generalize the
proposed ideas for other network measurement functions.

1. INTRODUCTION
It is widely accepted that network measurement is es-

sential for the monitoring and control of large networks.
For tracking various network statistics and for implement-
ing various network measurement, router management, and
data streaming algorithms, there is often the need to main-
tain very large arrays of statistics counters at wirespeeds
(e.g. many million counters for per-flow measurements). In
general, each packet arrival may trigger the updates of mul-
tiple per-flow statistics counters, resulting in possibly tens
of millions of updates per second. For example, on an 40
Gb/s OC-768 link, a new packet can arrive every 8 ns and
the corresponding counter updates need to be completed
within this time. Large counters, such as 64 bits wide, are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM HotMetrics’08, June 6, 2008, Annapolis, MD
Copyright 2008 ACM ...$5.00.

needed for tracking accurate counts even in short time win-
dows if the measurements take place at high-speed links as
smaller counters can quickly overflow. While implementing
large counter arrays in SRAM can satisfy the performance
needs, the amount of SRAM required is often both infeasi-
ble and impractical. As reported in [5], real-world Internet
traffic traces show that a very large number of flows can oc-
cur during a measurement period. For example, an Internet
traffic trace from UNC has 13.5 million flows. Assuming 64
bits for each flow counter, 108 MB of SRAM would already
be needed for just the counter storage, which is prohibitively
expensive. Therefore, researchers have actively sought alter-
native ways to realize large arrays of statistics counters at
wirespeed [2, 3, 4, 5].

In particular, several designs of large counter arrays based
on hybrid SRAM/DRAM counter architectures have been
proposed. Their baseline idea is to store some lower order
bits (e.g. 9 bits) of each counter in SRAM, and all its bits
(e.g. 64 bits) in DRAM. The increments are made only to
these SRAM counters, and when the values of SRAM coun-
ters become close to overflow, they will be scheduled to be
“flushed” back to the corresponding DRAM counter. These
schemes all significantly reduce the SRAM cost. In particu-
lar, the scheme by Zhao et al. [5] achieves the theoretically
minimum SRAM cost of say 4 to 5 bits per counters when
the speed difference between SRAM and DRAM ranges be-
tween 10 (40ns/4ns) and 20 (80ns/4ns). While this is a
huge reduction over a straightforward SRAM implementa-
tion, storing say 4 bits per counter in SRAM for 13.5 mil-
lion flows would still require nearly 7 MB of SRAM, which
is a substantial amount and difficult to implement on-chip.
Moreover, since the bounds on SRAM requirements for the
hybrid SRAM/DRAM approaches are based on preventing
SRAM counter overflows, the SRAM requirements are also
dependent on the size of the increments. If a wide range
of increments is needed, and large increments are possible,
then the possibility for overflows could occur earlier and
more SRAM counter bits would be needed to compensate,
resulting in yet larger SRAM requirements. In addition, the
existing hybrid SRAM/DRAM approaches do not support
arbitrary decrements and are based on an integer number
representation, whereas a floating point number representa-
tion may be needed in some applications [16, 17].

1.1 DRAM Solutions Can Be Plenty Fast
In this paper, we take a contrarian view that challenges

the main premise of the hybrid SRAM/DRAM architecture
proposals. Their main premise is that DRAM access laten-

cies are too slow for wirespeed updates, though DRAMs pro-
vide plenty of storage capacity for maintaining exact counts
for large arrays of counters. However, our main observation
is that modern DRAM architectures have advanced archi-
tecture features [8, 9, 10, 11] that can be exploited to make
a DRAM solution practical.

Driven by a seemingly insatiable appetite for extremely
aggressive memory data rates in graphics, multimedia, video
game, and high-definition television applications, the mem-
ory semiconductor industry has continually been driving
very aggressive roadmaps in terms of ever increasing mem-
ory bandwidths that can be provided at commodity pric-
ing (about $0.01/MB as of this writing). For example, the
Cell processor from IBM/Sony/Toshiba [6] uses two 32-bit
channels of XDR memories [12] with an aggregated memory
bandwidth of 25.6 GB/s. Using an approach called micro-
threading [11], the XDR memory architecture provides inter-
nally 16 independent banks inside just a single DRAM chip.
Next generation memory architectures [13] are expected to
achieve a data rate upwards of 16 GB/s on a single 16-bit
channel, 64 GB/s on an equivalent dual 32-bit channel in-
terface used by the Cell processor. This enormous amount
of memory bandwidth can be shared or time-multiplexed by
multiple network functions. The Intel IXP network proces-
sor [7] is another example of a state-of-the-art network pro-
cessor that has multiple high-bandwidth memory channels.
Besides XDR, other memory consortia have similar capabil-
ities and advanced architecture features on their roadmaps
as well as they are driven by the same demanding consumer
applications. For example, extremely high data efficiency
can be achieved using DDR3 memories as well [10].

Although these modern high-speed DRAM offerings pro-
vide extraordinary memory bandwidths, the peak access
bandwidths are only achievable when memory locations are
accessed in a memory interleaving mode (to ensure that in-
ternal memory bank conflicts are avoided). Conventional
wisdom is that the random access nature of network mea-
surement applications would render such access modes unus-
able. For example, for XDR memories [12], a new memory
operation could be initiated every 4 ns when the internal
memory banks are interleaved, but a worst-case access la-
tency of 38 ns is required for a read or a write operation if
memory bank accesses are unrestricted.

Our main observation is that memory interleaving can
be effectively used to maintain wirespeed updates to large
counter arrays by employing new counter management
schemes. In particular, we describe two such schemes in
this paper – one based on the replication of counters across
memory banks, and the other based on the randomized dis-
tribution of counters across memory banks.

The first scheme, called the replicated counter scheme,
works as follows. The main idea in the replicated counter
scheme is to maintain multiple copies of each counter. Sup-
pose the DRAM access latency is b times slower than the
corresponding SRAM (e.g. b = d38/4e = 10). The replicated
counter scheme works by using b DRAM banks and keeping
b copies of the same counter Ci as ci[0], ci[1], . . . , ci[b − 1],
one in each DRAM bank. Then, for each update to Ci, we
read the kth copy of Ci, namely ci[k], in the kth memory
bank, where k = t mod b rotates in a round-robin manner
with respect to the cycle t. As in [5], each cycle is defined
as two time slots, one for reading from SRAM, and one for
writing back to SRAM. With a DRAM-to-SRAM latency

ratio of b, the update would take b cycles to complete for
performing both a DRAM read as well as a DRAM write.
However, since we are interleaving across b DRAM banks,
we can initiate a new counter update every cycle, which en-
ables wirespeed throughput.

The second scheme, called the randomized counter
scheme, works as follows. To randomly distributed coun-
ters across b memory banks, we apply a random permutation
function to the counter index to obtain a randomly permuted
index and a memory bank location. At each memory bank
k, we maintain a small update request queue Qk of pend-
ing update requests. If an update to counter Ci is required
and Ci is store in memory bank k, then an update request
is inserted into Qk. Using stochastic and queuing analysis,
we show that only a very small queue (on the order of 80
entries) is required to ensure a negligible overflow probabil-
ity (say under 10−9). Then the requests at the head of the
request queues can be serviced in an interleaving order.

As we will see, for both schemes, we can leverage the in-
ternal independent memory banks already available inside a
modern DRAM chip without the expense of multiple paral-
lel memory channels, thus making both schemes very cost
effective. Moreover, since the counters are only stored in
DRAM, and there is no dependence on a notion of “flushing
a partial counter before it overflows,” both schemes can sup-
port arbitrary increments and decrements, and both schemes
can support different number representations, including un-
signed integers, signed integers (if decrements are needed),
or floating point numbers.

1.2 Summary of Main Points
The main points of this paper are as follows:

• Contrary to the prevailing view that DRAM is too
slow for wirespeed maintanence of large arrays of statis-
tics counters, we observe that modern commodity high-
bandwidth memories provide advanced architecture fea-
tures that can be exploited to make DRAM solutions
practical, and that consumer applications like video
games and high-definition television drive extremely ag-
gressive roadmaps in terms ever increasing memory
bandwidths at commodity pricing.

• We propose two DRAM-based schemes that can harness
the performance of these DRAM offerings by enabling
the interleaving of updates to multiple memory banks.

• We present concrete evaluations of our proposed schemes
using the XDR memory architecture [11, 12, 13], which
has 16 internal independent memory banks in each mem-
ory chip, and we show that wirespeed performance can
be achieved without the need for (or expense of) multiple
memory channels.

• We further note that modern broadband engines such
as the cell processor [6] and modern network processors
such as the Intel IXP 2855 [7] already incorporate mul-
tiple high-speed memory channels to support their in-
tended applications, and such aggregate memory band-
widths can be shared by multiple network functions.
Also, higher rates of counter updates can be achieved
by leveraging these additional memory channels.

• In comparisons with existing hybrid SRAM/DRAM
counter architectures [2, 3, 4, 5], we can achieve the same
update rates to counters, but without the need for a non-
trivial amount of SRAMs for storing partial counts.

:

b memory banks

New counter
update request

Round-robin
dispatch ci [0]

ci [1]

ci [b-1]

:

Figure 1: Memory architecture for replicated
counter scheme.

• Since our DRAM solutions are not dependent on the rate
of counter increments, as in hybrid SRAM/DRAM archi-
tectures, they can naturally handle increments or decre-
ments of arbitrary amounts. For example, flow counters
may need to be incremented by different byte amounts
depending on the size of the packet arrived.

• Further, our schemes are the first to applicable to differ-
ent number representations at wirespeed, including inte-
gers (signed or unsigned) and floating point numbers.

• Finally, we believe our preliminary success with the use
of DRAM schemes for the statistics counting problem
can pave the way to broader opportunities for new inno-
vative DRAM solutions for other network measurement
functions.

2. DRAM-BASED SOLUTIONS
Memory interleaving has in the past been successfully used

for improving the performance of computer systems [9, 14],
for graphics or video intensive applications [11], and for im-
plementing routing functions like high-performance packet
buffers [15]. In this section, we describe how this technique
can be employed for statistics counting.

2.1 Replicated Counter Scheme
As introduced in Section 1.1, our replicated counter

scheme is based on the simple idea of maintaining b copies
of each counter Ci as ci[0], ci[1], . . . , ci[b − 1], one in each
DRAM bank, where b is the DRAM-to-SRAM latency ra-
tio. This is depicted in Figure 1. If a counter update to
counter Ci occurs at cycle t, then the update is performed
to the copy ci[k] at the kth memory bank. The actual read
and write operations are interleaved at the time slot level. In
particular, suppose a read operation is initiated at time s for
some counter ci[k] at the kth memory bank. The data will
be available b time slots later. Meanwhile, read operations
for subsequent memory banks in the interleaving order can
be initiated. That is, a read operation is initiated at time
s + 1 for some counter cj [k + 1] at the (k + 1)th memory
bank. After b time slots later, s + b, the counter value ci[k]
is received from the kth memory bank. Then a write oper-
ation for the incremented counter value (ci[k] + 1) can be
initiated at cycle s + b + 1. Similarly, a write operation for
the updated counter value (e.g. cj [k+1]+1) can be initiated
at cycle s + b + 2, and so on. The update operation can be
arbitrary increments or decrements. After b cycles (or 2b
time slots), we return back to initiating read operations for
the next batch of counter updates. This replicated counter
scheme is depicted in Figure 2.1.

After the measurement period, the full actual value of a
counter can be obtained by summing over its b copies. Al-

:

b memory banks

update request
queue

New counter
update request

Random
permutation

Ci
π :{1..N} {1..N}

Figure 2: Memory architecture for randomized
counter scheme.

though we require b time slots (or b/2 cycles) to retrieve a
component ci[k] from the kth DRAM bank, we can initiate
a read transaction to the next DRAM bank in the next time
slot in an interleaving manner, one read transaction initi-
ated every time slot (or every 1/2 cycle). Therefore, the
last component ci[b − 1] would be retrieved from the last
DRAM bank by the end of the 2bth time slot, and all earlier
components would have already arrived. The total count,
Ci =

Pb−1
k=0 ci[k], can be accumulated on the fly as the cor-

responding components are retrieved. Thus, our one-of ran-
dom retrieval time is 2b time slots, which is adequate for the
intended applications that primarily need wirespeed update
speeds. However, for reporting purposes after a measure-
ment period, there is often a need to retrieve count statistics
from a large batch of counters, or possibly from all counters.
In this case, we can start retrieving the next counter from
the same memory bank after b time slots later, and thereby
achieving an effective retrieval rate of one full counter every
b time slots, twice as fast as a one-of retrieval.

2.2 Randomized Counter Scheme
Figure 2 depicts the randomized counter scheme. We

again use b memory banks to store the counters, but each
counter is only stored in one location. The basic idea is to
randomly distribute the counters evenly across the b memory
banks so that with high probability each memory bank will
receive about one out of b counter updates to it on average.
This is achieved by applying a pseudorandom permutation
function π : {1, . . . , N} → {1, . . . , N} to a counter index to
obtain a permuted index. We then use a simple location pol-
icy where counter Ci will be stored in the kth memory bank,
where k = π(i) mod b, at address location a = bπ(i)/bc.

As discussed in Section 1.1, we maintain a small update
request queue Qk of pending updates for each memory bank.
To update counter Ci that is stored in the kth memory bank,
an update request is inserted into Qk. These request queues
are then serviced in an interleaving order.

To bound the size of these request queues, we assume that
it would be extremely difficult for an adversary to purposely
trigger consecutively counter updates to the same memory
bank since the pseudorandom permutation function is not
known to the outside world. An adversary can only try to
trigger consecutive counter updates to the same counter, We
will defer to later to address how this adversarial situation
can be mitigated.

Deferring the aforementioned adversarial situation, and
given the explicit randomization, the worst-case workload
to an arbitrary DRAM bank can be modeled as a geometric

overflow probability vs. offered load

0

20

40

60

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
offered load

qu
eu

e
si

ze

Pr[|Q| > x] = 1e-06
Pr[|Q| > x] = 1e-09

Figure 3: Queue size vs. overflow probabilities.

arrival process with an arrival rate of at most once every b
time slots, where b is the number of DRAM banks. Corre-
spondingly, the probability that the request queue will over-
flow some threshold x can be analyzed using the steady state
probability of the unfinished work exceeding a certain level x
for a geometric source as a surrogate. Given that the inter-
leaving interval for a particular DRAM bank is a constant,
and DRAM access is guaranteed within this interval, we can
regard the service process as deterministic. Therefore, the
overflow probability of a request queue can be derived as the
overflow probability of a corresponding Geom/D/1 system,
which is known. Figure 3 plots the queue sizes necessary
to guarantee steady state overflow probabilities of 10−6 and
10−9. For example, to ensure an overflow probability of 10−9

for traffic load up to 90%, about 80 entries per queue is suf-
ficient. In practice, operators usually design their networks
to operate well below this offered load to ensure low queuing
delays and packet drops.

We now return to the discussion about adversarial traffic.
An adversary can try to trigger consecutive counter updates
to the same memory bank by triggering updates to the same
counter. This can be mitigated by keeping a small hash ta-
ble H of pending update requests that are already in the
queues. If a new counter update request arrives for counter
Ci, we can lookup H to see if there is already a pending
update request to this counter. If there is, then we can just
simply modify that request rather than creating a new one
(e.g. change the request from“+1” to “+2”). The hash table
needs to store as many entries as there are entries in the up-
date request queues, which is small since the request queues
are small. We can use hash table implementations such as
d-left hashing [18, 19, 20] to support insertion, lookups, and
deletion in worst-case constant time.

3. PRELIMINARY EVALUATIONS
We present preliminary numerical results on the two

DRAM-based counter array architecture schemes described
in Sections 2.1 and 2.2. In particular, we used parameters
derived from two real-world Internet traffic traces for our
evaluations. The traces that we used were collected at differ-
ent locations in the Internet, namely University of Southern
California (USC) and University of North Carolina (UNC),
respectively. The trace from USC was collected at their Los
Nettos tracing facility on February 2, 2004, and the trace

Figure 4: An example high-bandwidth DRAM ar-
chitecture. Each XDR memory IC has 16 internal
memory banks that can be interleaved.

from UNC was collected on a 1 Gbps access link connecting
to the campus to the rest of the Internet on April 24, 2003.
The trace from USC has 120.8 million packets and around
8.6 million flows, and the trace segment from UNC has 198.9
million packets and around 13.5 million flows. To support
sufficient counters for both traces, we set the counter array
configuration to support N = 16 million counters.

The numerical results are presented in Table 1. In partic-
ular, we compare our proposed schemes with a “naive” ap-
proach of implementing all counters in SRAM. We also com-
pare our schemes with the hybrid SRAM/DRAM counter
architecture approach [2, 3, 4, 5]. Specifically, we compare
against the state-of-the scheme proposed by Zhao et al. [5]
that provably achieves the minimum SRAM requirement for
this architecture class. As demonstrated in [5], their ap-
proach requires a factor of six times less SRAM than the first
hybrid SRAM/DRAM solution proposed in [2] and more
than a factor of two times less SRAM than an improved
solution proposed in [3].

To provide a concrete analysis of our proposed schemes,
we use the specification of an actual commercial high-
bandwidth memory part, namely the XDR memory from
Rambus [11, 12]. For an OC-768 link at 40 Gb/s, a new
minimum size (40 bytes) packet can arrive every 8 ns. To
support a counter update on every packet arrival, about 4 ns
is available for a memory read or a memory write. SRAMs
with 4 ns access latencies are readily available, and we will
assume this 4 ns SRAM access time. The XDR memory has
a worst-case access latency of 38 ns for a read or a write oper-
ation. Therefore, the DRAM-to-SRAM (worst-case) latency
ratio is b = d38/4e = 10. For the hybrid SRAM/DRAM
architecture proposed in [5], the number of SRAM bits re-
quired for each counter is ` = dlog be = dlog 10e = 4 bits. In
addition, it needs a very small amount of SRAM to main-
tain a “flush request queue”, on the order of about K = 500
entries to ensure negligible overflow probabilities.

For 16 million counters, a naive implementation would re-
quire 128 MB of SRAM, which is clearly far too expensive.
For the scheme by Zhao et al., it just requires 1.5 KB of con-
trol SRAM to implement a flush request queue with K = 500
entries. The size of each entry is dlog 16 millione = 24 bits
to encode the counter index. However, even though the

Naive Zhao et al. [5] Replicated (§2.1) Randomized (§2.2)
Counter DRAM None 128 MB DRAM 2 GB DRAM 128 MB DRAM
Counter SRAM 128 MB SRAM 8 MB SRAM None None
Control SRAM None 1.5 KB SRAM None 8 KB SRAM

Table 1: Comparison of different schemes for a reference configuration with 16 million 64-bit counters.

scheme requires just 4 bits per counter to store the partial
increments, 8 MB of counter SRAM is required for 16 mil-
lion counters. This is a substantial amount and difficult to
implement on-chip. Moreover, this counter SRAM require-
ment grows linearly with the number of counters, making it
difficult to support faster links or longer measurement peri-
ods where more counters would be needed.

For the replicated counter scheme and the randomized
counter scheme (described in Sections 2.1 and 2.2), we need
b memory banks to match the performance requirement of
wirespeed updates. This could be realized by using b sep-
arate memory channels and performing memory interleav-
ing across these channels. However, this is unnecessarily
expensive as modern DRAM architectures already provide
a plentiful number of internal memory banks. In particu-
lar, using the XDR memory as a concrete example, each
XDR memory chip contains 16 internal memory banks (as
depicted in Figure 4), and a new read or write transaction
could be initiated every 4 ns if it is initiated to a differ-
ent memory bank. To fully utilize all the memory locations
available inside an XDR memory chip, we will interleave
across 16 memory banks rather than b = 10. In particu-
lar, for the replicated counter scheme, the counters are only
stored in DRAM. However, the replicated counter scheme
requires replicating each counter 16 times, requiring 2 GB
of DRAM. Although this may appear to be a substantial
amount of DRAM, we note that DRAM is inexpensive, so
a higher DRAM requirement does not necessarily lead to a
significant cost increase. In particular, we note that 2 GB
of DRAM is commercially available today in an inexpen-
sive single memory module form factor (about $20 as of this
writing), and only one memory channel interface is needed.

On the other hand, the randomized counter scheme avoids
the need to replicate counters, and thus requires the same
amount of DRAM as the hybrid SRAM/DRAM schemes.
For each memory bank, the randomized counter scheme
needs to maintain a small update request queue. As shown
in Figure 3 and discussed in Section 2.2, it is sufficient to
have about 80 entries in each queue to ensure a queue over-
flow probability of 10−9, 1280 entries in total for the 16
memory banks, for up to 90% traffic load. In addition,
as discussed in Section 2.2, the randomized counter scheme
maintains a small hash table to keep track of pending up-
date requests in the update request queues. The hash ta-
ble needs to support as many entries as the update request
queues can store (i.e. 1280 entries). Together, the update re-
quest queues and the hash table requires just approximately
8 KB of SRAM, negligible compared to the 8 MB required
by the scheme by Zhao et al., but requires the same 128
MB of DRAM. Although our comparisons here are for an
integer number representation, we emphasize that our gen-
eral schemes are applicable to other number representations,
such as floating point numbers.

4. CONCLUDING REMARKS
We conclude by suggesting that the main ideas proposed

in this paper can be generalized for other wirespeed network
measurement functions where SRAM solutions were previ-
ously considered necessary. We are currently pursuing such
generalizations.

5. REFERENCES
[1] G. Varghese, C. Estan, “The measurement manifesto,”

HotNets-II, 2003.

[2] D. Shah et al., “Maintaining statistics counters in router
line cards,” IEEE MICRO, 2002.

[3] S. Ramabhadran, G. Varghese, “Efficient implementation of
a statistics counter architecture,” ACM SIGMETRICS,
2003.

[4] M. Roeder, B. Lin. “Maintaining exact statistics counters
with a multi-level counter memory,” IEEE GLOBECOM,
2004.

[5] Q. Zhao, J. Xu, Z. Liu, “Design of a novel statistics counter
architecture with optimal space time efficiency,” ACM
SIGMETRICS, 2006.

[6] M. Gschwin et al., “Synergistic processing in Cell’s
multicore architecture,” IEEE MICRO, 2006.

[7] Intel IXP 2855 network processor product brief. Intel
Corporation., Copyright 2005.

[8] S. I. Hong et al., “Access order and effective bandwidth for
streams on a direct rambus memory,” International
Symposium on High-Performance Computer Architecture,
1999.

[9] W. Lin, S. Reinhardt, D. Burger, “Reducing DRAM
latencies with an integrated memory hierarchy design,”
International Symposium on High-Performance Computer
Architecture, 2001.

[10] F. A. Ware, C. Hampel, “Improving power and data
efficiency with threaded memory modules,” International
Conference on Computer Design, 2006.

[11] F. A. Ware, C. Hampel, “Micro-threaded row and column
operations in a DRAM core,” Rambus White Paper, 2005.

[12] XDR datasheet. Rambus, Inc., Copyright 2002-2003.

[13] XDR-2 datasheet. Rambus, Inc., Copyright 2004-2005.
[14] D. Patterson, J. Hennessy, Computer Architecture: A

Quantitative Approach, 2nd. ed., San Francisco: Morgan
Kaufmann Publishers, 1996.

[15] G. Shrimali, N. McKeown, “Building packet buffers using
interleaved memories,” IEEE HPSR, 2005.

[16] P. Indyk, “Stable distributions, pseudorandom generators,
embeddings, and data stream computation,” IEEE-FOCS,
2000.

[17] H. Zhao et al., “A data streaming algorithm for estimating
entropies of OD flows,” ACM Internet Measurement
Conference, 2007.

[18] B. Vocking, “How asymmetry helps load balancing,”
IEEE-FOCS, 1999.

[19] A. Broder, M. Mitzenmacher, “Using multiple hash
functions to improve IP lookups,” IEEE INFOCOM, 2001.

[20] F. Bonomi, M Mitzenmacher, R. Panigrahy, S. Singh, G.
Varghese, “Beyond Bloom filters: From approximate
membership checks to approximate state machines,” ACM
SIGCOMM, 2006.

